Identity Based Online/Offline Encryption Scheme

نویسندگان

  • S. Sharmila Deva Selvi
  • S. Sree Vivek
  • C. Pandu Rangan
چکیده

Consider the situation where a low power device with limited computational power has to perform cryptographic operation in order to do secure communication to the base station where the computational power is not limited. The most obvious way is to split each and every cryptographic operations into resource consuming, heavy operations (which are performed when the device is idle) and the fast light weight operations (which are executed on the fly). This concept is called online/offline cryptography. In this paper, we show the security weakness of an identity based online offline encryption scheme proposed in ACNS 09 by Liu et al. [7]. The scheme in [7] is the first identity based online offline encryption scheme in the random oracle model, in which the message and recipient are not known during the offline phase. We show that this scheme is not CCA secure. We show the weakness in the security proof of CCA secure online/offline encryption system proposed by Chow et al. in [2]. We propose a new provably secure identity based online offline encryption scheme in which the message and receiver are not known during the offline phase. Since all the CCA secure identity based online/offline encryption schemes are shown to have weakness, ours is the first provably secure scheme with the aforementioned properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Identity-Based Online/Offline Encryption

The notion of online/offline encryption was put forth by Guo, Mu and Chen (FC 2008), where they proposed an identity-based scheme called identity-based online/offline encryption (IBOOE). An online/ offline encryption separates an encryption into two stages: offline and online. The offline phase carries much more computational load than the online phase, where the offline phase does not require ...

متن کامل

An Efficient Multi-PKG Online/Offline Identity-Based Encryption Scheme for Wireless Sensor Network

In this paper, we divide large-scale resource-constrained WSN nodes into several domains, split cryptographic operations into heavy operations and the fast lightweight operations, and present an efficient multi-PKG online/offline identity-based encryption scheme for multi-domain WSN. Most heavy computations such as pairing or exponentiation are done in the offline phase for pre-computation with...

متن کامل

Identity-Based Online/Offline Encryption

We consider a scenario of identity-based encryption (IBE) where the encryption device (such as a smartcard) has low power. To improve the computation efficiency, it is desirable that part of computation can be done prior to knowing the message and the recipient (its identity or public key). The real encryption can be conducted efficiently once the message and the recipient’s identity become ava...

متن کامل

Identity-Based Encryption with Conventional Public-Key Cryptography

This paper proposes an identity-based encryption (IBE) scheme based on traditional public-key cryptographic systems, such as RSA, DSA, Elgamal, etc. This scheme has a number of advantages over other systems. It can rely upon these traditional systems for its security. Since it uses these traditional encryption schemes, it is interoperable with and easily embedded within an existing security sys...

متن کامل

Artemia: a family of provably secure authenticated encryption schemes

Authenticated encryption schemes establish both privacy and authenticity. This paper specifies a family of the dedicated authenticated encryption schemes, Artemia. It is an online nonce-based authenticated encryption scheme which supports the associated data. Artemia uses the permutation based mode, JHAE, that is provably secure in the ideal permutation model. The scheme does not require the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010